编辑导语:当人工智能逐渐被普及应用到更多场景时,产品+人工智能也逐渐成为产品人们所要考虑的事情。那么,如何挖掘AI产品需求、实现产品落地?我们又该如何定义智能服务和智能体验?本文作者便结合其经验向我们展示了他的看法。
如今越来越多的产品经理也在考虑为自己的产品添加AI功能,但是事实上并没有那么容易。作为产品经理我经常能收集到各种AI产品的idea,有些甚至过于科幻,每当我们迫不及待地去实施的时候,结果总是状况百出。
该如何选择更好的技术方案或许是算法工程师关注的领域,但对AI产品来说,如何管理好AI产品需求也是一个重要挑战,这也是AI产品经理的使命所在。
这两年的实践中,我先后做了“Get写作”和“互链文档”两款智能写作产品,前者是针对新媒体写作场景,后者是针对于日常笔记场景。不管是哪个场景,摆在我们面前最大的问题并不是“我们可以用AI打造一款怎样与众不同的产品”,而是“我们该怎么去定义智能体验”。
学术界对于AI智能已经有了一些定义,人们期望AI像人一样,能合理地思考和行动(出自《人工智能——一种现代化的方法》),如下图。
从用户体验角度来看,AI产品的智能体现就是能合理地做出行为决策,换句话说就是“机器能根据输入条件作出合理判断并输出结果”,我们暂且称之为“自动化决策”。
例如,Siri能够合理地回答你问题,虽然有些回答听起来很搞笑,但只要输出的结果让人觉得合理,就依然会被人接受,如下图。
但AI的输出是否合理,这个取决于人的主观评判。这也是数据标注工作所做的意义所在——尽可能通过标注让模型更能贴近人的预期。
当我们把一连串“自动决策”串联在一起了后,就变成了一个自动化的业务流程,帮助人类省心省力地完成业务目标,这也是AI产品的价值体现。
例如,扫地机器人通过良好的寻址算法,趁主人不在家的时候扫遍房间的每一个角落,让人觉得省心又省力。但如果在扫地过程中不断需要主人来处理各种状况,如卷了电线和异物,就算这些状况和算法无关,那也会让人觉得不智能。
因此,AI产品的体验效果并不一定取决于算法,而是在产品使用过程中是否能流畅地达到用户预期的目标或价值。
综上,最终决定产品的智能体验感的核心还是在于经过AI的一系列自动决策后,能更好地满足业务场景中的需求。
根据前面的分析,所谓的AI产品需求管理,首先要挖掘那些能够自动化决策的需求点。其次当这些需求点串联在一起的时候,让产品整体能达到较好的使用体验。
前者和算法有关,后者不仅仅局限于算法,如下图所示:
需要强调的是,不管技术手段如何变,产品经理始终都需要以实现商业价值为目标,以用户体验为中心,选取具有可行性的技术手段和方案。
但反观目前市面上的一些AI产品经理的资料,通篇照搬AI技术的概念,而忽视了产品本质,这是一种舍本求末的表现。
在AI产品需求分析与整理的过程中,我们总结了以下四个关键步骤:
我们要教会AI决策,我们就要必须弄清楚人是怎样做决策的。我们应当以实现业务价值为最终目标,专注分析业务场景中的问题。在项目早期,收集实际场景中的业务案例显得尤为重要。
我们可以将收集的案例整理成一个个表格或者卡片,包含要素有:场景概述、业务目标、业务流程、关键决策点、业务痛点、过往案例。
文章来源:《商业故事》 网址: http://www.sygszzs.cn/zonghexinwen/2021/0427/1100.html